KHARMA + Argon: KML/HTML Augmented Reality Mobile Architecture and Client Browser

Blair MacIntyre and Alex Hill
School of Interactive Computing, GVU Center, Georgia Institute of Technology
Augmented Reality Technology

- Superimposing Synthetic Content
 - Usually graphics, but not exclusively
 - Usually focused on 3D content

- Three Technical Approaches
 - a) Projector-Based
 - b) See-Through
 - Video-See-Through (VST)
Augmented Reality Technology

Three Technical Approaches
- Projector-Based
- See-Through
- a,b) Video-See-Through (VST)

Video-See-Through Advantages
- Easily control live-synthetic registration
- Easily deployed on mobile devices
Mobile Augmented Reality

- Two Main Approaches
 - Computer Vision-based
 - Compass/GPS-based
- Computer Vision-based
 - a) Fiducial or b) Natural Feature Tracking
 - Content relative to camera
 (ex. ARToolKit, FLAR)
Mobile Augmented Reality

- Two Main Approaches
 - Computer Vision-based
 - Compass/GPS-based

- Compass/GPS-based
 - GPS location/Compass orientation
 - Standard equipment on many phones
 - Content absolutely geo-referenced
 - Numerous Commercial Offerings
 - a) Layar, b) Wikitude, Junaio, AcrossAir

a) Layar, b) Wikitude, Junaio, AcrossAir
Mobile AR: Research Themes

- Systems
 - What technologies to deploy mobile AR?

- Applications
 - What application areas benefit from mobile AR?

- Interaction Techniques
 - What techniques appropriate/efficient?

- Authoring Techniques
 - How facilitate authoring and content development?
 - Is there an AR “language” like in film and literature?
Mobile AR: Research Approach

- Systems
 - Leverage platforms already in use
 - Foster creation of standards

- Applications
 - Foster creation of numerous prototypes
 - Support user community creation

- Interaction Techniques
 - Let developers author presentation (i.e. clustering, labeling)

- Authoring Techniques
 - Reuse existing assets, skills and toolkits when possible
 - Add features to facilitate emerging techniques
Mobile AR: Prior Work

- Designers AR Toolkit
- Unity AR Toolkit

- research tools
- media hackers
- skilled computationalists
- savvy technical designers
- general public
- breadth of adoption
- our past focus
- current focus
KHARMA: Motivation

Mobile Client → Layar Servers → Content Aggregator → Content Provider

- no accepted standard
- proprietary client protocols
- limited client-side interactivity
- limited expression (coordinates, description, hyperlink)

“effectively Web 1.0”
KHARMA: Motivation

- **Systems**
 - No new architecture needed
 - 2D content powerful (i.e. billboards, buildings, surfaces)
 - Single application should handle multiple applications (i.e. a browser)

- **Applications**
 - Web 2.0 interactivity a minimum bar
 - Multiple applications “sandboxed” (i.e. tabs in a browser)

- **Interaction Techniques**
 - Applications respond to context (i.e. GPS accuracy)
 - Users switch context/focus (i.e. “tab” between Twitter, Coke, Google, etc.)
Predictable Authoring
- Lightweight Content
 - reference existing models
- Visual Control
 - match content w/ accuracy

Common Shared Resources
- Tracking Services
 - GeoSpot Server
- Infrastructure Services
 - Building Models

Leverage Existing Standards
- HTML/CSS for 2D Client
- COLLADA/WebGL for 3D
- HTTP Web Servers
KHARMA: KML/HTML Augmented Reality Mobile Architecture

HTML + KML

for What? How? and Where?

- extensive client side (albeit 2D) interactivity and expressivity
- two most broadly adopted presentation and geo location standards
- HTTP server distribution, CSS and Javascript = Web 2.0 content
KHARMA: KML/HTML Augmented Reality Mobile Architecture

KARML extension to KML

- description tag accepts CDATA enclosed markup
 - no global styling or scripting
- no control over balloon styling
- no control over balloon position and orientation
- no relative positioning
KHARMA: KML/HTML Augmented Reality Mobile Architecture

KARML extension to KML

- added undecorated displayMode
- added Balloon element
 - similar in nature to Model element
- relative locationMode
 - accepts “units” attribute
- global scope for Javascript and CSS
KHARMA: KML/HTML Augmented Reality Mobile Architecture

KARML extension to KML

• surveyed locations
 - GeoSpots
 - find local spots on a map
 - manually override GPS

• panoramic backgrounds
 - shot at GeoSpot location
 - manually override compass
 - eliminate compass error
KHARMA: KML/HTML Augmented Reality Mobile Architecture

Argon client for iPhone 4

- reference implementation of KARML
- multiple simultaneous channels
- bookmarked examples
KHARMA: KML/HTML Augmented Reality Mobile Architecture

- **Applications**
 - Foster creation of user community
 - Foster creation of many prototypes

- **Authoring Techniques**
 - Add features to facilitate emerging techniques

- **JavaScript API**
- **GoogleEarth tutorial**
- **KARML reference**
- **Basic and API examples**
Project Videos

- Systems
 - 2D content powerful (i.e. billboards, buildings, surfaces)

- Interaction Techniques
 - Let developers author presentation management (i.e. clustering, labeling)

- Applications
 - Web 2.0 interactivity must be minimum bar

http://www.youtube.com/watch?v=F_M8C2jW8PI

http://www.youtube.com/watch?v=01S1BbeJ-ik
Student Videos

http://www.youtube.com/watch?v=3dMvS6u_kHY

http://www.youtube.com/watch?v=AD5QbVcegkQ

http://www.youtube.com/watch?v=gKeX7umvWWY

ARBoretum

- Systems
 - Leverage platforms already in use (i.e. webservices)
- Applications
 - Foster creation of numerous prototypes
- Applications
 - Web 2.0 interactivity a minimum bar

Poring AR

Dotman’s Revenge
KHARMA: KML/HTML Augmented Reality Mobile Architecture

- Systems
 - Foster creation of standards

• W3C: Point of Interest Working Group
 - Launched September, 2010
 - Nokia, Open Geospatial Consortium, Navteq, Georgia Tech, others
 - December 2010, Atlanta
 - March 2011, Amsterdam

• International Workshops on AR Standards
 - October 2010, Seoul
 - February 2011, Barcelona
 - W3C, Khronos Group, OGC, VodaPhone, Nokia, IGD Fraunhoufer, others
KHARMA: KML/HTML Augmented Reality Mobile Architecture

- Implications for Accessibility
 - Leverage existing HTML standards
 - screen readers/tab through
 - some limited experimentation
 - DIVs become “visible” when in view
 - Universal Design
 - Virtual Reality bias towards full body interaction
 - VST AR is effectively flattened
 - results in “image-plane” techniques
 - selecting content similar to mousing (i.e. heading and pitch)
 - Applies to alternate input methods (i.e. Brain-Body, etc.)
KHARMA: KML/HTML Augmented Reality Mobile Architecture

- Implications for Accessibility
 - Leverage mobile sensors
 - forward facing cameras
 - hand tracking
 - obstacle detection
 - rear facing cameras
 - eye/head/gaze tracking
 - emotion detection (i.e. frustration)

- Telepresence
 - Place videos into surroundings
 - Place 3D avatar into surroundings
 - User controlled representation
KHARMA: KML/HTML Augmented Reality Mobile Architecture

- **Future Work**
 - Authoring Tools
 - desktop version
 - integration with MS Kinect
 - peripherals (i.e. external GPS, location services)
 - Infrastructure
 - elevation services
 - references to 3D models
 - Tracking
 - fiducial tracking
 - Natural Feature Tracking
 - Android version
KHARMA: KML/HTML Augmented Reality Mobile Architecture

http://research.cc.gatech.edu/kharma

Thank you

http://www.argon.gatech.edu